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Abstract

Second-moment closure predictions of developing turbulent ¯ow in a plane channel subjected to rapid spanwise rotation are

compared with experimental results. Near-wall e�ects are modelled by elliptic relaxation. Rapid pressure±strain interactions are

accounted for by a non-linear, cubic model which employs variable coe�cients and is consistent with the principle of material frame

indi�erence (MFI) in the limit of two-dimensional turbulence. It is shown that the rotational-induced e�ect of the Coriolis force on

the developing mean ¯ow ®eld and the turbulence quantities is well reproduced by the present approach. It is particularly en-

couraging that the experimentally observed relaminarization on the stabilized suction side of the channel could be predicted

well. Ó 2000 Elsevier Science Inc. All rights reserved.
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Notation

aij Reynolds stress anisotropy, uiuj=k ÿ 2dij=3
A2 second Reynolds stress invariant, aijaij

A3 third Reynolds stress invariant, aikakjaji

dp
ij pressure di�usion of uiuj

d t
ij turbulent di�usion of uiuj

dv
ij viscous di�usion of uiuj

fij intermediate variable
F ¯atness parameter, 1ÿ 9�A2 ÿ A3�=8
H channel half-width
k turbulent kinetic energy, uiuj=2
L turbulent length scale
P mean static pressure
P � reduced mean static pressure,

P � � P ÿ qX2xixi=2
Pk production rate of turbulent kinetic energy,

Pii=2
Pij production rate of uiuj due to mean shear
Rij production rate of uiuj due to system rotation
Re global Reynolds number, Re � UmH=m
Ro rotation number, Ro � 2XH=Um

Sij mean rate-of-strain tensor, �ojUi � oiUj�=2
T turbulent time scale

Ui mean velocity in xi-direction
Uc centreline velocity
Um bulk mean velocity
U� streamwise mean velocity normalized by wall

friction velocity, U1=us

ui xi-component of ¯uctuating velocity
u0 root mean square value of u
us wall friction velocity,

�����������
sW=q

p
ÿuiuj kinematic Reynolds stress
Wij mean intrinsic vorticity tensor,

�ojUi ÿ oiUj�=2� �jikXk

x; y; z Cartesian coordinates de®ned in Fig. 1
y� inner variable, yus=m
�ijk permutation tensor
}ij relaxed pressure±strain tensor

Greeks
dij Kronecker delta
e energy dissipation rate, eii=2
eij dissipation rate tensor
l dynamic viscosity
m kinematic viscosity
q density
sw wall shear stress, loU=oyjw
U mean viscous dissipation function
Uij pressure±strain interactions
X angular velocity de®ned in Fig. 1

Superscripts
h homogeneous part
p pressure part
t turbulent part
r rapid part
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1. Introduction

Fluid ¯ow in non-inertial frames of reference are encoun-
tered in a variety of engineering applications. Among these are
for instance the ¯ow through a radial compressor impeller or
the internal ¯ow in cooling passages of gas turbine bladings.
The Coriolis force associated with imposed system rotation is
known to profoundly a�ect, not only the mean ¯ow ®eld, but
also the intensity and structure of the turbulence. There exists
considerable interest to accurately predict these e�ects since
the performance of an actual machine component can be de-
graded signi®cantly at o�-design conditions.

Computational ¯uid dynamics (CFD) has become an es-
sential design tool in many industries. For most engineering
applications in the foreseeable future, this approach will be
based on Reynolds-averaged Navier±Stokes equations
(RANS). The success of a CFD analysis inevitably depends
strongly on the adopted turbulence model. It is therefore un-
fortunate that the most frequently adopted models are based
on Boussinesq's linear eddy-viscosity hypothesis, e.g. the k±e
model. An inherent shortcoming of these closures is their
frame indi�erence property. In other words, they are insensi-
tive to the imposed system rotation.

To extend the predictive capability of linear eddy-viscosity
closures, non-linear models have been proposed in the litera-
ture (e.g. Speziale, 1987). In these, non-linear elements of the
mean deformation rate tensors are retained in the constitutive
equation. System rotation enters the stress±strain relationship
explicitly through the mean intrinsic vorticity tensor. However,
in these models the relation for the shear stress reduces to the
commonly used linear form in the limit of parallel shear ¯ow
(the non-linear terms are zero). This is true for all constant-
coe�cient, non-linear eddy-viscosity models that are realiz-
able, cf. Speziale (1998). Parallel shear ¯ow, although super-
®cially simple, constitutes an important basic ¯ow relevant to
numerous engineering applications.

Second-moment closures (SMCs) are the most natural
closure level for computing ¯ows a�ected by body forces due
to e.g. imposed system rotation or streamline curvature. In
contrast to scalar-based models, e.g. k±e, the individual com-
ponents of the Reynolds stress tensor are obtained from a set
of modelled transport equations. The potential advantage of
SMCs is due to the natural appearance of exact production
terms due to mean shear and system rotation. The convective
transport of second moments is also retained in its exact form.

A viable and less computational expensive alternative
would be to adopt a so-called explicit algebraic stress model
(EASM). An EASM can formally be derived from elaborate
SMCs and it constitutes an exact solution of the SMC in the
limit of homogeneous and equilibrium turbulence (cf. Pope
1975; Gatski and Speziale 1993). In this limit, production
terms due to mean shear and system rotation from the SMC
transport equations can be retained in their exact form. Its
constitutive relation has the same generic form as a non-linear
eddy-viscosity model but the coe�cients are functions of di-
mensionless velocity-gradient parameters rather than being
constants. Although these closures are promising, they are

ambiguous; their form depends on the coordinate system in
which they are derived. Furthermore, EASMs are formally
only valid in homogeneous, equilibrium turbulence which
rarely is encountered in ¯ows of engineering interest.

The majority of engineering ¯ows are characterized by non-
equilibrium, near-wall turbulence. Within the framework of
SMCs, the important a priori unknown, pressure±strain cor-
relation tensor is traditionally modelled by invoking a quasi-
equilibrium assumption. However, this model usually needs to
be modi®ed in the proximity of e.g solid boundaries. Durbin
(1993) introduced the so-called elliptic relaxation approach to
incorporate near-wall e�ects into SMCs. It di�ers from the
traditional wall-echo terms introduced into earlier models as
additive corrections (cf. e.g. Launder et al., 1975). Instead of
an ad hoc wall damping term, elliptic near-wall e�ects are in-
troduced by solving a Helmholtz equation with the quasi-ho-
mogeneous pressure±strain model as source term. Since the
formulation is independent of source representation, any
quasi-homogeneous pressure±strain model can be used. No
wall topography parameters are used, so the method is directly
applicable to general geometries. It has successfully been ap-
plied to a variety of ¯ows, not only in inertial frames (Durbin,
1993; Pettersson-Reif and Andersson, 1999), but also in non-
inertial systems (Wizman et al., 1996; Pettersson and Anders-
son, 1997).

Numerous experimental studies of fully developed channel
¯ow subjected to spanwise rotation have been performed.
Among the earlier ones are e.g. Launder (1965), Moore (1967)
and Johnston et al. (1972). Through improved computing re-
sources, highly accurate direct numerical simulations (DNS)
have become feasible, however, this approach is still limited to
relatively low Reynolds numbers. Kristo�ersen and Andersson
(1993) reported DNS results of fully developed channel ¯ow
subject to spanwise rotation. A salient feature of this particular
¯ow is that the e�ect of the imposed rotation on the mean ¯ow
®eld enters only via the turbulence equations. It constitutes
therefore a good benchmark test for the assessment of turbu-
lence closures in rotating frames of reference, see e.g. Launder
and Tselepidakis (1994) and Pettersson and Andersson (1997).
The impact of the Coriolis force depends not only on the
magnitude, but also on the orientation of the rotation vector.
Depending on the sense of rotation, augmentation and re-
duction of the turbulent intensity is expected on the corre-
sponding pressure and suction side of the channel, respectively.
The imposed rotation not only breaks the symmetry of the
mean ¯ow ®eld, it may eventually also lead to relaminarizat-
ion. The reduced turbulence level implies less mean momentum
transfer towards the surface whereby e.g. in a general geometry
the tendency for ¯ow separation to occur is increased.

However, in the majority of engineering applications, the
¯ow ®eld cannot be considered fully developed. Instead, de-
veloping boundary layers are more common. The objective of
the present investigation is therefore to assess the performance
of a near-wall SMC for the developing ¯ow in the entrance
region of a rapidly rotating plane channel. The experimental
measurements reported by Koyama and Ohuchi (1985) are
used as reference data. This is an especially challenging test
case since the ¯ow tends to relaminarize on one side of the
channel and the near-wall modelling therefore plays a crucial
role. The elliptic relaxation approach is adopted in conjunction
with the pressure±strain model due to Ristorcelli et al. (1995).
The low-Re approach is strongly motivated by the fact that
reliable computations of complex wall-¯ows require a proper
representation of wall boundary conditions. This cannot in
general be achieved by the wall-function approach. The pres-
ent SMC ful®ls the principle of material frame indi�erence
(MFI) in the limit of two-dimensional turbulence, which
makes the choice suitable for rapidly rotating ¯ows. The

m viscous part
+ wall coordinates
0 root mean square value

Subscripts
c centreline
m bulk mean
w wall value
1,2 value of streamwise and wall-normal

components
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present study is a sequel to our recent investigation (Dutzler et
al., 1997), in which a developing channel ¯ow subjected to
moderate spanwise rotation was considered.

2. The mathematical model

2.1. Mean ¯ow equations

The problem under consideration is that of incompressible
and developing turbulent channel ¯ow shown schematically in
Fig. 1. The steady mean ¯ow is in the xy-plane and the channel
is rotated with constant angular velocity X about the z-axis.
The governing Reynolds-averaged equations for mass conti-
nuity and momentum can be written in Cartesian tensor no-
tation as:

oUi

oxi
� 0; �1�

q
o

oxj
�UiUj� � ÿ oP �

oxi
� o

oxj
l

oUi

oxj

�
ÿ quiuj

�
ÿ 2qXjUk�ijk; �2�

where Ui and ui denote mean and ¯uctuating parts of the ve-
locity component in the xi-direction, respectively.
P � � P ÿ �1=2�qX2�x2 � y2� denotes the reduced mean static
pressure and P is the mean pressure.

2.2. Turbulence modelling

The unknown Reynolds stresses ÿquiuj in Eq. (2) can be
obtained from the exact Reynolds stress transport equation
which can be written as:

D uiuj

Dt
� Pij � Rij � dv

ij � d t
ij � dp

ij � }ij ÿ uiuj

k
e; �3�

where

Pij � ÿ umui
oUj

oxm

�
� umuj

oUi

oxm

�
; �4a�

Rij � ÿ2Xk umui�jkm

ÿ � umuj�ikm

�
; �4b�

dv
ij � m

o2uiuj

oxkoxk
; �4c�

d t
ij � dp

ij � ÿ
o

oxk
uiujuk

ÿ �ÿ 1

q
o

oxk
puidjk

ÿ � pujdik

�
; �4d�

}ij � p
q

oui

oxj
� ouj

oxi

� �
|�����������{z�����������}

Uij

ÿeij � uiuj

k
e �4e�

are the production due to mean shear Pij and system rotation
Rij, viscous, turbulent and pressure di�usion dv

ij; d t
ij; dp

ij and
the ÔrelaxedÕ pressure±strain tensor }ij. The last term in Eq. (3)
is Rotta's anisotropic model for the dissipation rate tensor eij.

dij is the Kronecker delta and �ijk denotes the permutation
tensor. m � l=q is the kinematic viscosity. For steady mean
¯ow the local change in uiuj is zero and the convective terms
become the only contributions to the substantial derivative
Duiuj=Dt. The important generation terms Pij and Rij need no
modelling and enter the uiuj equations in their exact form. The
primary e�ect of system rotation can therefore be incorporated
in a natural way. In addition, rotational terms enter the
modelled rapid pressure±strain correlation through the mean
intrinsic vorticity. The viscous di�usion term dv

ij can also be
retained in its exact form whereas the unclosed di�usion terms
d t

ij and dp
ij in Eq. (4d) are modelled together by gradient dif-

fusion as

d t
ij � dp

ij �
o

oxn

CKunumT
ouiuj

oxm

� �
; �5�

where T is a turbulent time scale, cf. Eq. (9).
Durbin's elliptic relaxation equation: The redistribution

tensor }ij in Eq. (4e) is obtained from the solution fij of the
elliptic relaxation equation proposed by Durbin (1993), which
can be put into coordinate-independent form and written as
follows:

}ij � kfij; �6a�

L2r2fij ÿ fij � ÿ
}h

ij

k
; �6b�

}h
ij denotes the quasi-homogeneous form of }ij, fij is an in-

termediate variable and L is a turbulent length scale usually
taken as

L � CL max
k3=2

e
;Cg

m
e

� �1=4
� �

�7�

with the Kolmogorov length scale as a lower bound.
The elliptic relaxation equation (6b) is a modi®ed Helm-

holtz equation and accounts indirectly for non-local e�ects
within the ¯ow, which are caused by the proximity of a solid
boundary. These e�ects are kinematic blocking of the wall-
normal velocity ¯uctuation and pressure re¯ections from the
surface. This approach is attractive since Eqs. (6a) and (6b) is
free of wall distances and unit vectors which make the model
applicable to ¯ows bounded by a complex geometry. Through
imposed boundary conditions on Eq. (6b), non-homogeneous
e�ects of a wall can be represented. Far from the surface the
e�ect of the elliptic operator in Eq. (6b), vanishes and }ij re-
laxes to its quasi-homogeneous form }h

ij � kfij. Furthermore,
far from the wall locally isotropic dissipation can be assumed,
i.e. eij � 2dije=3, and Eq. (4e) reduces to }h

ij � Uh
ij � aije, where

aij � uiuj=k ÿ 2dij=3 is the Reynolds stress anisotropy tensor.
Any quasi-homogeneous pressure±strain model can be used in
place of Uh

ij. This study adopts the non-linear model due to
Ristorcelli et al. (1995) hereafter denoted as RLA, see Ap-
pendix A. The right-hand side of Eq. (6b) then takes the form

}h
ij

k
� Uhr

ij

k
� �1ÿ C1�

T
aij; �8�

where T is a turbulent time scale de®ned as

T � max
k
e
; 6:0

m
e

� �1=2
� �

�9�

with Kolmogorovs time scale as a lower bound, in analogy
with Eq. (7). The purpose of introducing the Kolmogorov
scale in Eq. (9) is to avoid a singularity in Eq. (10) as k ! 0 at
a solid boundary.Fig. 1. Schematic of ¯ow con®guration and coordinate system.
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In order to close the set of governing equations, the dissi-
pation rate e of the turbulent kinetic energy k is obtained from
its own modelled transport equation:

o
oxj

Uje
ÿ � � C�e1Pk ÿ Ce2e

T
� o

oxj
m

oe
oxj

�
� CeT uiuj

oe
oxi

�
; �10�

where C�e1 � Ce1�1� 0:1�Pk=e�� and the use of the time scale T
are the only modi®cations of the standard high-Re model
equation.

The model equation governing the turbulent kinetic energy
is given by

o
oxj

Ujk
ÿ � � Pk ÿ e� o

oxj
m

ok
oxj

�
� CKT uiuj

ok
oxi

�
: �11�

The present study adopts a somewhat modi®ed form of the
turbulent lenght scale L in conjunction with the RLA pres-
sure±strain model. This modi®cation is related to an obser-
vation of Wizman et al. (1996) who found that in the
logarithmic-layer the original formulation of the elliptic re-
laxation equation (Durbin, 1993) tends to amplify the redis-
tribution of energy among the components of the Reynolds
stress tensor, in opposition to what is expected. In order to
embed the correct wall-echo e�ect Wizman et al. (1996)
reformulated the elliptic relaxation model and proposed a
so-called neutral formulation. Instead of altering the elliptic
relaxation equation, Pettersson and Andersson (1997) pro-
posed to modify the length scale L: the coe�cients (CL and Cg)
in Eq. (7) are replaced by

~CL � CLA1=2
2 ; ~Cg � CgAÿ1=2

2 exp

 
ÿ 1� A3

0:1� A2

� �2
!
; �12�

respectively, where A2 � aijaji denotes the second and
A3 � aikakjaji the third Reynolds-stress invariants. Model
constants are listed in Table 1.

The ¯ow in a rotating channel can relaminarize due to the
stabilizing e�ect of the Coriolis force. This gives rise to a sin-
gularity in Eq. (7) as e! 0. In order to remove this singularity,
Pettersson and Andersson (1997) replaced the dissipation rate
e in Kolmogorov's length scale by ê �

���������������
e2 � U2

p
; where U is

the mean viscous dissipation function de®ned as 2mSklSkl and
Skl denotes the mean rate-of-strain tensor. The length scale in
Eq. (6b) now takes the ®nal form

L � ~CL max
k3=2

e
; ~Cg

m3

ê

� �1=4
 !

: �13�

3. Numerical method

The present study uses a modi®ed version of the elliptic
®nite-volume solver TEAM-RSM (Huang and Leschziner,
1983). The code solves for 11 variables stored in a staggered
grid arrangement. The spanwise stress component u2

3 is not
solved for but instead derived from the relation
u2

3 � 2k ÿ u2
1 ÿ u2

2; where u2
1�� u2� is the streamwise and

u2
2�� v2� the wall-normal stress component. In the mean mo-

mentum equations the convection terms are approximated by
the Quadratic Upstream-weighted Interpolation scheme

(QUICK) while in the equations for k, e and uiuj the Power-
Law-Di�erencing Scheme (PLDS) is used. The SIMPLE
algorithm is used to handle the important velocity±pressure
linkage. The transport equations for the Reynolds-stresses are
solved simultaneously with their corresponding fij-equations
(uiuj ÿ fij systems) and the k±e equations are solved as a
coupled pair. The resulting set of algebraic equations is solved
semi-implicitely by a tridiagonal matrix algorithm for the
momentum equations and by a block-tridiagonal matrix al-
gorithm for the k±e and uiuj ÿ fij systems using alternating
sweep directions. The coupling between the pairs of equations
is dictated primarily by a coupling in the boundary conditions.
Solving two equations at a time results in a more stable
scheme.

To further enhance the stability of the second-moment
computations a fully staggered arrangement of all stress lo-
cations relative to mean-velocity locations is used. This prac-
tice results in a stronger coupling between the stresses and the
associated driving mean strains (Huang and Leschziner, 1985).
Furthermore, the stress transport equations are recast into a
form permitting a part of each stress to be expressed as a
gradient-type di�usion, like mijoUi=oxj, and a remaining resid-
ual stress. Here, mij is an unconditional positive apparent vis-
cosity. The residual stresses are included into the source terms
whereas the gradient-type di�usion is included into the di�u-
sion terms of the mean momentum equations in order to en-
hance the numerical stability. In addition, it is discriminated
between positive contributions to the source which are added
to the uniform part of the source term and negative ones which
are included into the proportional part of the source term
(Huang and Leschziner, 1985).

No-slip boundary conditions were used at the solid walls
together with k � ok=oy � 0 for the k±e system and uiuj � 0
and

fij � ÿ 20m2

ewy4
1

uiuj

ÿ �
1

i and=or j in wall-normal direction;

0 i and j in tangential direction;

(
where ew � 2mk1=y2

1 . Subscript 1 denotes the wall adjacent
computational node. The boundary conditions for fij can be
derived from the local solution of the model equation gov-
erning the wall-normal stress component u2

2 at the wall (cf.
Durbin, 1993). In¯ow and out¯ow boundary conditions are
discussed in the next section. The calculations were carried out
on a 100� 50 (cross-stream ´ streamwise) Cartesian grid sys-
tem. The ®rst grid point in the cross-stream direction was lo-
cated at about y� � 0:5 and moderate grid expansion was
applied towards the channel centre. In the streamwise direction
a highly expanded grid was generated so that a large portion of
grid points was used to cover the experimentally investigated
area of developing ¯ow in the entrance region of the channel.
This grid layout was found to be su�cient to obtain a grid-
independent solution. The solution was considered to be
numerically converged when the sum of absolute normalized
residuals over the calculation domain fell below 10ÿ4.

4. Numerical results and discussion

Extensive results from experimental investigations of de-
veloping two-dimensional boundary layers in a rotating wind
tunnel have been published by Koyama et al. (1979) and Ko-
yama and Ohuchi (1985). The straight test channel had cross-
sectional dimensions of 280 mm ´ 40 mm (z- and y-directions)
and a length of 670 mm (x-direction, see Fig. 1). With this
aspect ratio of 7:1, two-dimensional boundary layers accom-
panied by a potential core were found to exist in the centre-
region of the channel. The free stream turbulence in the

Table 1

Model constants

Ce1 Ce2 CK Ce CL Cg

1.44 1.85 0.19 0.14 0.18 647
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potential core was about 2%. A hot-wire system was used to
measure the mean velocity and the streamwise turbulence in-
tensity at six di�erent downstream locations. The ®rst pro®le
at x � 0 was obtained 55 mm downstream the inlet and the
streamwise spacing between the measuring stations was
100 mm.

The present computations were carried out for two di�erent
cases with the bulk mean velocity Um� 5 m/s and an angular
velocity of X � 0 rad/s and X � 10p rad/s (i.e. 300 rpm), re-
spectively. The global Reynolds number Re � UmH=m based on
the channel half-width H (cf. Fig. 1), was approximately 5900.
The rotation number, de®ned as Ro � 2HX=Um was either zero
or 0.25. The rectangular calculation domain was 2000 mm
long, i.e. four times longer than the distance from the ®rst to
the last measuring station, thus ensuring fully developed ¯ow
conditions at the outlet of the calculation domain.

Care was taken to ensure fully consistent inlet conditions
for the numerical computations since the available set of ex-
perimental data was insu�cient to provide pro®les for all
dependent variables. In the experiments, the developing
boundary layers were unfortunately tripped on one side only.
A sand paper and a tripping wire were mounted on the wall at
y � 0 just upstream of the inlet to the test section (see Fig. 1).
Therefore, the ¯ow remained laminar under certain conditions
on the opposite side �y � 2H�. When calculations were based
on measured in¯ow conditions, convergence was possible only
for the case when the channel was rotated such that the tur-
bulence level was enhanced on the untripped side, i.e. for
X < 0. To circumvent this di�culty the following approach
was adopted: In the non-rotating case the data on the tripped
side of the channel were assigned to both sides, thereby re-
sulting in a symmetric pro®le across the channel. In the ro-
tating case, on the other hand, the asymmetric inlet velocity
pro®le was derived by matching two turbulent mean velocity
pro®les for X > 0 and X < 0 taken from the tripped channel
side: The pro®le from y � 0 to y � H for X < 0 was mirrored
on the channel centre line from y � H to y � 2H and matched
with the velocity pro®le from y � 0 to y � H for X > 0. By
means of this approach, fully turbulent cross-sectional pro®les
were achieved. Exactly the same procedure was used to gen-
erate the inlet pro®le for the streamwise turbulence intensity
u2. By this approach inlet boundary conditions were prescribed
in accordance with the measured distributions of U and u2 at
the ®rst measurement station (cf. Nilsen and Andersson, 1994).
For all other quantities, reasonable approximations were
necessary and the following procedure was used: Calculations
were ®rst performed for fully developed ¯ow conditions with
Re � 5900 and Ro � 0. From the converged solution, pro®les
from the wall to the centreline for v2 and w2 were adjusted to
the actual boundary layer thickness. This was also done for the
shear stress uv, the fij-values and the dissipation rate e. In the
potential core, isotropic turbulence was assumed. Further-
more, the magnitudes of the v2 and w2 inside the boundary
layers were adjusted such that the ratio u2:v2:w2 were the same
as in the solution for the fully developed ¯ow case. Subse-
quently, the pro®le for the turbulent kinetic energy was com-
puted from its de®nition k � uiui=2 and the wall values of e and
fij were adjusted according to the boundary conditions given in
Section 3. The Schwarz inequality, which for this case reads
�uv�26 u2 � v2, was not violated by this procedure. A linear
cross-stream pressure distribution adjusted to the rotation rate
was prescribed. This is in accordance to the quasi-one-di-
mensional potential ¯ow analysis of Rothe and Johnston
(1976). Through this procedure, a fully consistent set of input
data was derived.

Computed pro®les of mean velocity U and streamwise
turbulence intensity u0 � �u2�1=2

for the non-rotating case at
three di�erent streamwise positions are presented in Figs. 2

and 3, respectively. The predictions are compared with the
experimental ®ndings of Koyama and Ohuchi (1985). As can
be seen from the results, the boundary layer thickness increases
while the potential core shrinks as the ¯ow develops down-
stream. According to the predictions, the boundary layers
merge at about x � 500 mm and, eventually, fully developed
¯ow conditions are established further downstream of
x � 1500 mm. This observation suggests ®rst that the imposed
fully developed ¯ow boundary conditions at the outlet can be
justi®ed and secondly that the ¯ow at the ®nal measuring
station �x � 500 mm� is far from being fully developed.
However, the actual growth of the boundary layers is some-
what overpredicted. The reason for this may be attributed to
the two-dimensional assumption of the calculation whereby
the displacement e�ect of the end-wall boundary layers at
z � 0 and z � 280 mm is not accounted for. According to the
experiments, the boundary layers would merge slightly
downstream of x � 500 mm. The peak of the streamwise tur-
bulence intensity shown in Fig. 3 is captured quite well by the
model except at x � 300 mm where it is somewhat underpre-
dicted. This can partly be explained by the fact that u0 has been
normalized by the computed centre line velocity Uc which is
too high as compared to the experiments due to the overesti-
mated boundary layer growth. The overall agreement is,
however, satisfactory.

Figs. 4 and 5 display the streamwise turbulence intensity
and the mean velocity distributions for Re � 5900 and
Ro � 0:25. In our preceding investigation of the same ¯ow
con®guration (Dutzler et al., 1997), Re � 11800 and
Ro � 0:12. Nakabayashi and Kitoh (1996) suggested that the
combination Ro=�2 Re� is the essential parameter in wall-
bounded ¯ows subject to system rotation. They used the

Fig. 2. Pro®les of streamwise distribution of mean velocity U at three

di�erent locations for Ro � 0; computed results (lines) are compared

with experimental data (symbols) of Koyama and Ohuchi (1985).

Fig. 3. Pro®les of streamwise turbulence intensity uÕ at three di�erent

locations for Ro � 0 (legend as in Fig. 2).
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friction velocity as the velocity scale in their analysis, while the
bulk mean velocity is adopted in the present study. Thus, the
paramenter Ro=�2 Re� � Xm=U 2

m has been increased by a factor
4 in the present study as compared to our previous calculations
(Dutzler et al., 1997), thereby suggesting a much stronger in-
¯uence of rotation on the overall structure of the turbulent
¯ow ®eld. Indeed, Fig. 4 displays a substantial reduction of the
streamwise turbulence intensity on the stabilized suction side
of the channel. The highly asymmetric mean velocity pro®les in
Fig. 5 exhibit the characteristic shift of the maximum velocity
towards the suction side of the channel. The overall agreement
between the mean velocity pro®les and the measurements are
good. At the ®nal measuring station �x � 500 mm�, however,
some deviations occur on the unstable side �y=2H � 0�. These
can be ascribed to the experimentally observed Taylor±G�ortler
(TG) like vortices in the y±z plane which can not be captured
by a two-dimensional calculation in the x±y plane, cf. Fig. 1.
The experiments also show a nearly linear velocity distribution
in the channel centre with almost zero absolute mean vorticity,
i.e. oU=oy � 2X. The slope of the computed velocity pro®les in
the irrotational potential core is in good agreement with the
experiments, but this region becomes somewhat narrower due
to the overpredicted boundary layer growth.

The predictions of the streamwise turbulence intensity in
Fig. 4 along the leading pressure side �y=2H � 0� indicate an
underestimation of the peak in the vicinity of the wall and in
the centre of the channel while in the log-layer up to y� � 150
they coincide quite well with the experimental data. This dis-
crepancy can again be explained by the existence of TG-like
vortices, as conjectured earlier by Nilsen and Andersson
(1994). The rotational-induced reduction of the streamwise
turbulence intensity at the trailing suction side �y=2H � 1:0� is
somewhat underpredicted by the model, but the overall re-
duction is substantially more pronounced than in our earlier

calculations (Dutzler et al., 1997). The measurements at the
stabilized suction side exhibit a reduction of the peak level to
the free stream turbulence level, which thereby suggests that
relaminarization occurs, see also Koyama and Ohuchi (1985).

In fact, Fig. 6 displays the predicted shear stress distribu-
tion at the downstream position x � 500 mm, where the model
returned a substantial region of almost zero shear stress which
expands over about 50% of the channel width. This indicates a
complete relaminarization at the stabilized suction side of the
channel. Furthermore, Fig. 6 clearly demonstrates that the
present modelling approach is capable of predicting this ¯ow
phenomenon.

The di�erent boundary layer development along the two
walls is obviously associated with the di�erence in the tur-
bulence levels near the suction and pressure side, respectively.
Examinations of how system rotation a�ects the turbulent
¯ow ®eld are frequently based on an analysis of the exact
production terms due to mean shear Pij and system rotation
Rij in the otherwise modelled transport equations for the in-
dividual Reynolds stress components, see Eqs. (3)±(4b). The
rotational production R22 � ÿ4Xuv tends to increase (reduce)
the wall-normal stress component at the pressure (suction)
channel side. Since R11 � ÿR22, opposite e�ects of rotation
might be expected on the streamwise component u2. However,
one has to consider the total production P11 � R11 of the
streamwise component. For the fully developed ¯ow case,
which is a reasonable approximation for the present situation,
we obtain:

P11 � R11 � ÿ2uv
oU
oy
� 4Xuv � P11 1

�
ÿ 2X

oU=oy

�
: �14�

For moderately weak rotation, i.e. j2X=�oU=oy�j � 1, Eq. (14)
is dominated by the changes in the mean shear producion P11,
which is indirectly a�ected by system rotation through the
Coriolis e�ect on v2. This is so because the wall-normal tur-
bulence intensity enters the primary shear production
P12 � ÿv2oU=oy which directly a�ects the shear stress distri-
bution and in turn enters Eq. (14) via uv. For higher rotation
rates, v2 exceeds u2 on the pressure side and the rotational
production R12 � 2X�u2 ÿ v2� tends to reduce the magnitude of
uv and in turn the total production P11 � R11 of u2. In fact,
Fig. 7 shows the variation of v2=u2 across the channel. A re-
versal of the conventional ratio between v2 and u2 (i.e.
v2=u2 < 1� occurs over a substantial part of the channel which

Fig. 6. Predicted shear stress distribution at x � 500 mm for

Ro � 0:25.

Fig. 5. Pro®les of streamwise distribution of mean velocity U at three

di�erent locations for Ro � 0:25 (legend as in Fig. 2).

Fig. 4. Pro®les of streamwise turbulence intensity uÕ at three di�erent

locations for Ro � 0:25 (legend as in Fig. 2).
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penetrates far into the pressure side boundary layer. This ex-
plains the gradual reduction of the peak of the streamwise
turbulence intensity (Fig. 4) at the pressure side as the ¯ow
develops downstream. It is indeed encouraging that the rota-
tional-induced reduction of the streamwise intensity along the
pressure side is reproduced by the model predictions. The
notion of the pressure side as the destabilized side of a rotating
channel can therefore be misleading.

Fig. 8 shows the predicted variation of P=e at the outlet
where fully developed ¯ow conditions are established. The
model predicts local equilibrium turbulence only on the pres-
sure side of the rotating channel where the production ap-
proximately equals the dissipation rate. On the suction side,
however, a substantial deviation can be observed. These ®nd-
ings are in agreement with the DNS results of Andersson and
Kristo�ersen (1995) who concluded that the wall-function
approach based on the assumption P � e should be abandoned
in rotating turbulent ¯ows. Moreover, a small region of neg-
ative turbulent energy production, i.e. P < 0, near the channel
centre can also be observed which also is consistent with the
DNS results (Andersson and Kristo�ersen, 1995). In this re-
gion, mean ¯ow energy is extracted from the turbulence. Since
negative turbulent production arises from opposite signs of the
mean velocity gradient and the turbulent shear stress, this
phenomenon cannot be predicted by models based on the
eddy-viscosity hypothesis.

The variation of the structural parameter uv=k at the
channel outlet (x� 2 m) is shown in Fig. 9. In the rotating ¯ow
case the pro®le exhibits a substantial deviation from the
common value 0.3 in the log-layer which is implicitly assumed
in the wall-function approach.

Fig. 10 shows the predicted mean velocity pro®le in wall
units for the non-rotating and rotating cases at the down-

stream position x � 0:5 m. For the non-rotating case the
model predictions exhibit a logarithmic pro®le in close agree-
ment with the Ôlaw-of-the-wallÕ. For the rotating case, on the
other hand, it is evident that the wake component is enhanced
on the suction side of the channel whereas on the pressure side,
it is completely eliminated. The pro®les on the suction side
show a typical laminar-like shape. The deviation from the
logarithmic distribution increases as the rotation number is
raised.

Finally, Fig. 11 shows the predicted streamwise develop-
ment of the friction velocity us � jswj=q� �1=2

for the non-ro-
tating (dashed line) and rotating ¯ow case Ro � 0:25 (lines)
and comparisons are made with the Preston-tube measure-
ments (symbols) of Koyama and Ohuchi (1985). The signi®-
cant e�ect of rotation on the wall friction is captured well on
the suction side. However, the monotonic increase on the
pressure side could not be reproduced by the model. The
reason for this may be attributed to the assumption of two-
dimensionality in the computations, an assumption which is
also questionable in the experiments. Obviously, two coun-
teracting e�ects are present along the pressure side: the
thickening of the boundary layer tends to reduce the wall
friction, whereas the enhanced turbulent agitation due to the
Coriolis force and the TG like vortices tend to increase the wall
friction. The data in Fig. 11 suggest that the latter e�ect is the
more prominent in the experimental setup. It should also be
noted that there is a minor anomaly in the experimental

Fig. 8. Predicted variation of P=e at the outlet x � 2000 mm.

Fig. 9. Predicted variation of the structural parameter uv=k at the

outlet x � 2000 mm.

Fig. 10. Mean velocity distributions in wall units for Ro � 0 and

Ro � 0:25 at x � 500 mm (symbols are used to reference the lines to

their corresponding rotation number).

Fig. 7. Predicted variation of v2=u2 at x � 500 mm.
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results, namely that the friction velocity on the suction side is
initially larger than on the pressure side.

5. Concluding remarks

An elaborate near-wall Reynolds stress model has been
used to compute the boundary layer development in a rapidly
rotating plane channel. To account for the rapid pressure±
strain interactions, the non-linear variable-coe�cient model
due to Ristorcelli et al. (1995) was employed. The novel elliptic
relaxation approach was used to model near-wall e�ects. The
overall agreement with the experimental ®ndings of Koyama
and Ohuchi (1985) is good, although the boundary layer
growth is somewhat overpredicted. This may be attributed to
the two-dimensional assumption of the ¯ow in the calculations
which may be only partly valid in the laboratory channel. On
the unstable pressure side, minor deviations occur which are
ascribed to the experimentally observed, rotationally induced,
longitudinal TG like vortices. To further investigate these is-
sues, fully three-dimensional computations are required so that
the blockage e�ect of the end-wall boundary layers and the
rotationally induced vortical roll cells can be resolved. How-
ever, the model is able to reproduce the experimentally ob-
served relaminarization on the stabilized suction side of the
channel. These achievements are ascribed to the novel near-
wall treatment introduced by Durbin (1993). A substantial
reduction of the streamwise turbulence intensity and an almost
zero turbulent shear stress over a large portion on the stabi-
lized side of the channel was observed. Furthermore, the
computational results indicated that the turbulence ®eld is far
from being in equilibrium on the stabilized suction side and
that a tiny region of negative production of turbulence energy
exists in the channel core. This is fully consistent with the DNS
results reported by Andersson and Kristo�ersen (1995) for
fully developed channel ¯ow.
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Appendix A. Pressure±strain correlation

A.1. The Ristorcelli, Lumley and Abid (RLA) model

Ristorcelli et al. (1995) proposed a non-linear model for the
rapid pressure±strain correlation Uhr

ij which involves cubic
terms in the anisotropy tensor bij � aij=2 and employs
variable-coe�cients which are functions of the Reynolds stress
invariants. The RLA model statis®es a weak form of
realizability which ensures positive normal Reynolds stress
components.

The geostrophic constraint implies that in the limit of rapid
rotation the portion of the rapid pressure±strain correlation
associated with rotation must balance the Coriolis terms Rij in
the modelled second-moment equations, therefore, leaving the
equations independent of rotation. This led to another rigor-
ous form of realizability which the RLA model ful®ls: the
principle of MFI in the limit of two-dimensional turbulence,
see also Speziale (1998). This is a direct consequence of the
Taylor±Proudman theorem which requires that the equations
must be independent of rotation when the velocity ®eld is
two-dimensionalized in a plane perpendicular to the axis of
rotation. The general form of the model for the rapid pressure±
strain is

Uhr
ij

4k
� C3

ÿ ÿ 2IIC003 � 3IIIC0003

�
Sij � C4 bikSkj

�
� bjkSik ÿ 2

3
bklSkldij

�
� C0004 bklSkl b2

ij

�
� 2

3
dijII

�
� C5 bikWkj

ÿ � bjkWki

�
� bij C6bklSkl

ÿ � C0004 blkbkmSlm

�
� C7 b2

ikSkj

�
� b2

jkSki ÿ 2

3
dijblkbkmSlm

�
� C8 b2

ikWkj

�
� b2

jkWki

�
� C9 bikWlkb2

lj

�
� bjkWlkb2

li

�
; �A:1�

where

Sij � 1

2

oUi

oxj

�
� oUj

oxi

�
; Wij � 1

2

oUi

oxj

�
ÿ oUj

oxi

�
� �jikXk �A:2�

are the mean rate-of-strain tensor and the mean intrinsic
vorticity tensor and b2

ij � bikbkj. II � ÿbijbij � ÿA2=8 and
III � bikbkjbji=3 � A3=24 are the second and third Reynolds
stress invariants, respectively. The variable coe�cients of
Eq. (A.1) are given in Ristorcelli et al. (1995).

For the slow pressure±strain Uhs
ij a simple linear Rotta-type

model of the form Uhs
ij � ÿC1e�uiuj ÿ �2=3�kdij�=k � ÿC1eaij is

used in Eq. (8). However, for the variable linear-return coef-
®cient, the expression C1 � �2ÿ 31IIF 1=2�=2 was invented by
Ristorcelli et al. (1995) where F � 1ÿ �9=8��A2 ÿ A3� is the
¯atness parameter.
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